Teknik Elektro

Teknik Elektro

Selasa, 31 Januari 2012

Penjelasan Transistor

Pengertian Transistor
Transistor adalah alat semikonduktor yang dipakai sebagai penguat, pemotong (switching), stabilisasi tegangan, modulasi sinyal atau fungsi lainnya. Transistor dapat berfungsi semacam kran listrik, dimana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya.

 

Pada umumnya, transistor memiliki 3 terminal. Tegangan atau arus yang dipasang di satu terminalnya mengatur arus yang lebih besar yang melalui 2 terminal lainnya. Transistor adalah komponen yang sangat penting dalam dunia elektronik modern. Dalam rangkaian analog, transistor digunakan dalam amplifier (penguat). Rangkaian analog meling kupi pengeras suara, sumber listrik stabil, dan penguat sinyal radio. Dalam rangkaian-rangkaian digital, transistor digunakan sebagai saklar berkecepatan tinggi. Beberapa transistor juga dapat dirangkai sedemikian rupa sehingga berfungsi sebagai logic gate, memori, dan komponen-komponen lainnya.



Cara kerja semikonduktor

Pada dasarnya, transistor dan tabung vakum memiliki fungsi yang serupa; keduanya mengatur jumlah aliran arus listrik.

Untuk mengerti cara kerja semikonduktor, misalkan sebuah gelas berisi air murni. Jika sepasang konduktor dimasukan kedalamnya, dan diberikan tegangan DC tepat dibawah tegangan elektrolisis (sebelum air berubah menjadi Hidrogen dan Oksigen), tidak akan ada arus mengalir karena air tidak memiliki pembawa muatan (charge carriers). Sehingga, air murni dianggap sebagai isolator. Jika sedikit garam dapur dimasukan ke dalamnya, konduksi arus akan mulai mengalir, karena sejumlah pembawa muatan bebas (mobile carriers, ion) terbentuk. Menaikan konsentrasi garam akan meningkatkan konduksi, namun tidak banyak. Garam dapur sendiri adalah non-konduktor (isolator), karena pembawa muatanya tidak bebas.

Silikon murni sendiri adalah sebuah isolator, namun jika sedikit pencemar ditambahkan, seperti Arsenik, dengan sebuah proses yang dinamakan doping, dalam jumlah yang cukup kecil sehingga tidak mengacaukan tata letak kristal silikon, Arsenik akan memberikan elektron bebas dan hasilnya memungkinkan terjadinya konduksi arus listrik. Ini karena Arsenik memiliki 5 atom di orbit terluarnya, sedangkan Silikon hanya 4. Konduksi terjadi karena pembawa muatan bebas telah ditambahkan (oleh kelebihan elektron dari Arsenik). Dalam kasus ini, sebuah Silikon tipe-n (n untuk negatif, karena pembawa muatannya adalah elektron yang bermuatan negatif) telah terbentuk.

Selain dari itu, silikon dapat dicampur dengan Boron untuk membuat semikonduktor tipe-p. Karena Boron hanya memiliki 3 elektron di orbit paling luarnya, pembawa muatan yang baru, dinamakan “lubang” (hole, pembawa muatan positif), akan terbentuk di dalam tata letak kristal silikon.

Dalam tabung hampa, pembawa muatan (elektron) akan dipancarkan oleh emisi thermionic dari sebuah katode yang dipanaskan oleh kawat filamen. Karena itu, tabung hampa tidak bisa membuat pembawa muatan positif (hole).

Dapat disimak bahwa pembawa muatan yang bermuatan sama akan saling tolak menolak, sehingga tanpa adanya gaya yang lain, pembawa-pembawa muatan ini akan terdistribusi secara merata di dalam materi semikonduktor. Namun di dalam sebuah transistor bipolar (atau diode junction) dimana sebuah semikonduktor tipe-p dan sebuah semikonduktor tipe-n dibuat dalam satu keping silikon, pembawa-pembawa muatan ini cenderung berpindah ke arah sambungan P-N tersebut (perbatasan antara semikonduktor tipe-p dan tipe-n), karena tertarik oleh muatan yang berlawanan dari seberangnya.

Kenaikan dari jumlah pencemar (doping level) akan meningkatkan konduktivitas dari materi semikonduktor, asalkan tata-letak kristal silikon tetap dipertahankan. Dalam sebuah transistor bipolar, daerah terminal emiter memiliki jumlah doping yang lebih besar dibandingkan dengan terminal basis. Rasio perbandingan antara doping emiter dan basis adalah satu dari banyak faktor yang menentukan sifat penguatan arus (current gain) dari transistor tersebut.

Jumlah doping yang diperlukan sebuah semikonduktor adalah sangat kecil, dalam ukuran satu berbanding seratus juta, dan ini menjadi kunci dalam keberhasilan semikonduktor. Dalam sebuah metal, populasi pembawa muatan adalah sangat tinggi; satu pembawa muatan untuk setiap atom. Dalam metal, untuk mengubah metal menjadi isolator, pembawa muatan harus disapu dengan memasang suatu beda tegangan. Dalam metal, tegangan ini sangat tinggi, jauh lebih tinggi dari yang mampu menghancurkannya. Namun, dalam sebuah semikonduktor hanya ada satu pembawa muatan dalam beberapa juta atom. Jumlah tegangan yang diperlukan untuk menyapu pembawa muatan dalam sejumlah besar semikonduktor dapat dicapai dengan mudah. Dengan kata lain, listrik di dalam metal adalah inkompresible (tidak bisa dimampatkan), seperti fluida. Sedangkan dalam semikonduktor, listrik bersifat seperti gas yang bisa dimampatkan. Semikonduktor dengan doping dapat dirubah menjadi isolator, sedangkan metal tidak.

Gambaran di atas menjelaskan konduksi disebabkan oleh pembawa muatan, yaitu elektron atau lubang, namun dasarnya transistor bipolar adalah aksi kegiatan dari pembawa muatan tersebut untuk menyebrangi daerah depletion zone. Depletion zone ini terbentuk karena transistor tersebut diberikan tegangan bias terbalik, oleh tegangan yang diberikan di antara basis dan emiter. Walau transistor terlihat seperti dibentuk oleh dua diode yang disambungkan, sebuah transistor sendiri tidak bisa dibuat dengan menyambungkan dua diode. Untuk membuat transistor, bagian-bagiannya harus dibuat dari sepotong kristal silikon, dengan sebuah daerah basis yang sangat tipis.
 
Cara kerja transistor
Dari banyak tipe-tipe transistor modern, pada awalnya ada dua tipe dasar transistor, bipolar junction transistor (BJT atau transistor bipolar) dan field-effect transistor (FET), yang masing-masing bekerja secara berbeda.

Transistor bipolar

Transistor bipolar dinamakan demikian karena kanal konduksi utamanya menggunakan dua polaritas pembawa muatan: elektron dan lubang, untuk membawa arus listrik. Dalam BJT, arus listrik utama harus melewati satu daerah/lapisan pembatas dinamakan depletion zone, dan ketebalan lapisan ini dapat diatur dengan kecepatan tinggi dengan tujuan untuk mengatur aliran arus utama tersebut.

FET

FET (juga dinamakan transistor unipolar) hanya menggunakan satu jenis pembawa muatan (elektron atau hole, tergantung dari tipe FET). Dalam FET, arus listrik utama mengalir dalam satu kanal konduksi sempit dengan depletion zone di kedua sisinya (dibandingkan dengan transistor bipolar dimana daerah Basis memotong arah arus listrik utama). Dan ketebalan dari daerah perbatasan ini dapat dirubah dengan perubahan tegangan yang diberikan, untuk mengubah ketebalan kanal konduksi tersebut. Lihat artikel untuk masing-masing tipe untuk penjelasan yang lebih lanjut.

Jenis-jenis transistor

Simbol Transistor dari Berbagai Tipe
PNP P-channel
NPN N-channel
BJT JFET



Secara umum, transistor dapat dibeda-bedakan berdasarkan banyak kategori:

Materi semikonduktor: Germanium, Silikon, Gallium Arsenide
Kemasan fisik: Through Hole Metal, Through Hole Plastic, Surface Mount, IC, dan lain-lain
Tipe: UJT, BJT, JFET, IGFET (MOSFET), IGBT, HBT, MISFET, VMOSFET, MESFET, HEMT, SCR serta pengembangan dari transistor yaitu IC (Integrated Circuit) dan lain-lain.
Polaritas: NPN atau N-channel, PNP atau P-channel
Maximum kapasitas daya: Low Power, Medium Power, High Power
Maximum frekwensi kerja: Low, Medium, atau High Frequency, RF transistor, Microwave, dan lain-lain
plikasi: Amplifier, Saklar, General Purpose, Audio, Tegangan Tinggi, dan lain-lain

B J T
BJT (Bipolar Junction Transistor) adalah salah satu dari dua jenis transistor. Cara kerja BJT dapat dibayangkan sebagai dua dioda yang terminal positif atau negatifnya berdempet, sehingga ada tiga terminal. Ketiga terminal tersebut adalah emiter (E), kolektor (C), dan basis (B).




Perubahan arus listrik dalam jumlah kecil pada terminal basis dapat menghasilkan perubahan arus listrik dalam jumlah besar pada terminal kolektor. Prinsip inilah yang mendasari penggunaan transistor sebagai penguat elektronik. Rasio antara arus pada koletor dengan arus pada basis biasanya dilambangkan dengan ß atau hFE. ß biasanya berkisar sekitar 100 untuk transistor-transisor BJT.

F E T


FET dibagi menjadi dua keluarga: Junction FET (JFET) dan Insulated Gate FET (IGFET) atau juga dikenal sebagai Metal Oxide Silicon (atau Semiconductor) FET (MOSFET). Berbeda dengan IGFET, terminal gate dalam JFET membentuk sebuah dioda dengan kanal (materi semikonduktor antara Source dan Drain). Secara fungsinya, ini membuat N-channel JFET menjadi sebuah versi solid-state dari tabung vakum, yang juga membentuk sebuah dioda antara antara grid dan katode. Dan juga, keduanya (JFET dan tabung vakum) bekerja di “depletion mode”, keduanya memiliki impedansi input tinggi, dan keduanya menghantarkan arus listrik dibawah kontrol tegangan input. FET lebih jauh lagi dibagi menjadi tipe enhancement mode dan depletion mode. Mode menandakan polaritas dari tegangan gate dibandingkan dengan source saat FET menghantarkan listrik. Jika kita ambil N-channel FET sebagai contoh: dalam depletion mode, gate adalah negatif dibandingkan dengan source, sedangkan dalam enhancement mode, gate adalah positif. Untuk kedua mode, jika tegangan gate dibuat lebih positif, aliran arus di antara source dan drain akan meningkat. Untuk P-channel FET, polaritas-polaritas semua dibalik. Sebagian besar IGFET adalah tipe enhancement mode, dan hampir semua JFET adalah tipe depletion mode.

M O S F E T
MOSFET, singkatan dari Metal Oxyde Semi Conductor atau Transistor efek medan, adalah jenis transistor yang bekerja dengan adanya modulasi dari medan listrik di dalam bahan semikonduktor. Antara FET dan MOSFET tidak ada perbedaan, hanya yang membedakan:

Adanya lapisan S1O2 yang mambatasi gate dan channel.
Arus listrik yang masuk sangat kecil sekali.
Jenis-jenis transistor efek medan adalah MOSFET, JFET, MESFET, HEMT, dan TFT.


I G B T
Transistor IGBT (Insulated-Gate Bipolar Transistor) adalah piranti semikonduktor yang setara dengan gabungan sebuah transistor bipolar (BJT) dan sebuah transistor efek medan (MOSFET).




Input dari IGBT adalah terminal Gate dari MOSFET, sedang terminal Source dari MOSFET terhubung ke terminal Basis dari BJT. Dengan demikian, arus drain keluar dan dari MOSFET akan menjadi arus basis dari BJT. Karena besarnya tahanan masuk dari MOSFET, maka terminal input IGBT hanya akan menarik arus yang kecil dari sumber. Di pihak lain, arus drain sebagai arus keluaran dari MOSFET akan cukuo besar untuk membuat BJT mencapai keadaan saturasi. Dengan gabungan sifat kedua elemen tersebut, IGBT mempunyai perilaku yang cukup ideal sebagai sebuah sakelar elektronik. Di satu pihak IGBT tidak terlalu membebani sumber, di pihak lain mampu menghasilkan arus yang besar bagi beban listrik yang dikendalikannya.

Komponen utama di dalam aplikasi elekronika daya (power electronics) dewasa ini adalah sakelar zat padat (solid-state switches) yang diwujudkan dengan peralatan semikonduktor seperti transistor bipolar (BJT),transistor efek medan (MOSFET), maupun Thyristor. Sebuah sakelar ideal di dalam aplikasi elektronika daya akan mempunyai sifat-sifat sebagai berikut:

pada saat keadaan tidak menghantar (OFF), sakelar mempunyai tahanan yang besar sekali, mendekati nilai tak berhingga. Dengan kata lain, nilai arus bocor struktur sakelar sangat kecil
Sebaliknya, pada saat keadaan menghantar (ON), sakelar mempunyai tahanan menghantar (R_on) yang sekecil mungkin. Ini akan membuat nilai tegangan jatuh (voltage drop) keadaan menghantar juga sekecil mungkin, demikian pula dengan besarnya daya lesapan (power dissipation) yang terjadi, dan kecepatan pensakelaran (switching speed) yang tinggi.
Sifat nomor (1) umumnya dapat dipenuhi dengan baik oleh semua jenis peralatan semikonduktor yang disebutkan di atas, karena peralatan semikonduktor komersial pada umumnya mempunyai nilai arus bocor yang sangat kecil.
Untuk sifat nomor (2), BJT lebih unggul dari MOSFET, karena tegangan jatuh pada terminal kolektor-emitter, VCE pada keadaan menghantar (ON) dapat dibuat sekecil mungkin dengan membuat transitor BJT berada dalam keadaan jenuh (saturasi).
Sebaliknya, untuk unsur kinerja nomor (3) yaitu kecepatan switching, MOSFET lebih unggul dari BJT, karena sebagai divais yang bekerja berdasarkan aliran pembawa muatan mayoritas (majority carrier), pada MOSFET tidak dijumpai aruh penyimpanan pembawa muatan minoritas pada saat proses pensakelaran, yang cenderung memperlamnat proses pensakelaran tersebut.
Sejak tahun 1980-an telah muncul jenis divais baru sebagai komponen sakelar untuk aplikasi elektronika daya yang disebut sebagai Insulated Gate Bipolar Transistor (IGBT).

Sesuai dengan yang tercermin dari namanya, divais baru ini merupakan divais yang menggabungkan struktur dan sifat-sifat dari kedua jenis transistor tersebut di atas, BJT dan MOSFET. Dengan kata lain, IGBT mempunyai sifat kerja yang menggabungkan keunggulan sifat-sifat kedua jenis transistor tersebut. Terminal gate dari IGBT, sebagai terminal kendali juga mempunyai struktur bahan penyekat (insulator) sebagaimana pada MOSFET.

Dengan demikian, terminal masukan IGBT mempunyai nilai impedansi yang sangat tinggi, sehingga tidak membebani rangkaian pengendalinya yang umumnya terdiri dari rangkaian logika. Ini akan menyederhanakan rancangan rangkaian pengendali (controller) dan penggerak (driver) dari IGBT.

Di samping itu, kecepatan pensakelaran IGBT juga lebih tinggi dibandingkan divais BJT, meskipun lebih rendah dari divais MOSFET yang setara. Di lain pihak, terminal keluaran IGBT mempunyai sifat yang menyerupai terminal keluaran (kolektor-emitter) BJT. Dengan kata lain, pada saat keadaan menghantar, nilai tahanan menghantar (R_on) dari IGBT sangat kecil, menyerupai R_on pada BJT.

Dengan demikian bila tegangan jatuh serta resapan dayanya pada saat keadaan menghantar juga kecil. Dengan sifat-sifat seperti ini, IGBT akan sesuai untuk dioperasikan pada arus yang besar, hingga ratusan amper, tanpa terjadi kerugian daya yang cukup berarti. IGBT sesuai untuk aplikasi pada perangkat Inverter maupun Kendali Motor Listrik (Drive).

OP-Amplifier


Op-Amp (operational amplifier)


Operational Amplifier atau di singkat op-amp merupakan salah satu komponen analog yang sering digunakan dalam berbagai aplikasi rangkaian elektronika. Aplikasi op-amp yang paling sering dipakai antara lain adalah rangkaian inverter, non-inverter, integrator dan differensiator. Pada pokok bahasan kali ini akan dipaparkan beberapa aplikasi op-amp yang paling dasar, yaitu rangkaian penguat inverting, non-inverting differensiator dan integrator.


I. Pengertian Dasar Op-Amp


Operational Amplifier atau di singkat op-amp merupakan salah satu komponen analog yang sering digunakan dalam berbagai aplikasi rangkaian elektronika. Aplikasi op-amp yang paling sering dipakai antara lain adalah rangkaian inverter, non-inverter, integrator dan differensiator. Pada pokok bahasan kali ini akan dipaparkan beberapa aplikasi op-amp yang paling dasar, yaitu rangkaian penguat inverting, non-inverting differensiator dan integrator.

Pada Op-Amp memiliki 2 rangkaian feedback (umpan balik)yaitu feedback negatif dan feedback positif dimana Feedback negatif pada op-amp memegang peranan penting. Secara umum, umpanbalik positif akan menghasilkan osilasi sedangkan umpanbalik negatif menghasilkan penguatan yang dapat terukur.

Op-amp ideal


Op-amp pada dasarnya adalah sebuah differential amplifier (penguat diferensial) yang memiliki dua masukan. Input (masukan) op-amp ada yang dinamakan input inverting dan non-inverting. Op-amp ideal memiliki open loop gain (penguatan loop terbuka) yang tak terhingga besarnya. Seperti misalnya op-amp LM741 yang sering digunakan oleh banyak praktisi elektronika, memiliki karakteristik tipikal open loop gain sebesar 104 ~ 105. Penguatan yang sebesar ini membuat op-amp menjadi tidak stabil, dan penguatannya menjadi tidak terukur (infinite). Disinilah peran rangkaian negative feedback (umpanbalik negatif) diperlukan, sehingga op-amp dapat dirangkai menjadi aplikasi dengan nilai penguatan yang terukur (finite).

Impedasi input op-amp ideal mestinya adalah tak terhingga, sehingga mestinya arus input pada tiap masukannya adalah 0. Sebagai perbandingan praktis, op-amp LM741 memiliki impedansi input Zin = 106 Ohm. Nilai impedansi ini masih relatif sangat besar sehingga arus input op-amp LM741 mestinya sangat kecil.

Ada dua aturan penting dalam melakukan analisa rangkaian op-amp berdasarkan karakteristik op-amp ideal. Aturan ini dalam beberapa literatur dinamakan golden rule, yaitu :

Aturan 1:Perbedaan tegangan antara input v+ dan v- adalah nol (v+ - v- = 0 atau v+ = v- )
Aturan 2:Arus pada input Op-amp adalah nol (i+ = i- = 0)

Inilah dua aturan penting op-amp ideal yang digunakan untuk menganalisa rangkaian op-amp.

II. Karakteristik Dasar Op-Amp

Seperti yang telah disebutkan sebelumnya bahwa pada dasarnya Op-amp adalah sebuah differential amplifier (penguat diferensial), yang mana memiliki 2 input masukan yaitu input inverting (V-) dan input non-inverting(V+), Rangkaian dasar dari penguat diferensial dapat dilihat pada gambar 1 dibawah ini:


Gambar 1 : Penguat Diferensial

Pada rangkaian diatas, dapat diketahui tegangan output (Vout) adalah Vout = A(v1-v2) dengan A adalah penguatan dari penguat diferensial ini. Titik input v1 dikatakan sebagai input non-iverting, sebab tegangan vout satu phase dengan v1. Sedangkan sebaliknya titik v2 dikatakan input inverting sebab berlawanan phasa dengan tengangan vout.

Diagram Blok Op-amp
Op-amp di dalamnya terdiri dari beberapa bagian, yang pertama adalah penguat diferensial, lalu ada tahap penguatan (gain), selanjutnya ada rangkaian penggeser level (level shifter) dan kemudian penguat akhir yang biasanya dibuat dengan penguat push-pull kelas B. Gambar-2(a) berikut menunjukkan diagram dari op-amp yang terdiri dari beberapa bagian tersebut.




gambar-2 (a) : Diagram blok Op-Amp


gambar-2 (b) : Diagram schematic simbol Op-Amp 

Simbol op-amp adalah seperti pada gambar-2(b) dengan 2 input, non-inverting (+) dan input inverting (-). Umumnya op-amp bekerja dengan dual supply (+Vcc dan –Vee) namun banyak juga op-amp dibuat dengan single supply (Vcc – ground). Simbol rangkaian di dalam op-amp pada gambar-2(b) adalah parameter umum dari sebuah op-amp. Rin adalah resitansi input yang nilai idealnya infinit (tak terhingga). Rout adalah resistansi output dan besar resistansi idealnya 0 (nol). Sedangkan AOL adalah nilai penguatan open loop dan nilai idealnya tak terhingga.

Saat ini banyak terdapat tipe-tipe op-amp dengan karakterisktik yang spesifik. Op-amp standard type 741 dalam kemasan IC DIP 8 pin. Untuk tipe yang sama, tiap pabrikan mengeluarkan seri IC dengan insial atau nama yang berbeda. Misalnya dikenal MC1741 dari motorola, LM741 buatan National Semiconductor, SN741 dari Texas Instrument dan lain sebagainya. Tergantung dari teknologi pembuatan dan desain IC-nya, karakteristik satu op-amp dapat berbeda dengan op-amp lain.

Kalau Ada yang Kurang Jelas Boleh Dtanyakan >>>!!??"" ..  :-)


Pengenalan IC


IC atau integrated circuit adalah komponen elektronika semikonduktor yang merupakan gabungan dari ratusan atau ribuan komponen-komponen lain. Bentuk IC berupa kepingan silikon padat, biasanya berwarna hitam yang mempunyai banyak kaki-kaki (pin) sehingga bentuknya mirip sisir..  Ada beberapa macam IC berdasarkan komponen utamanya yaitu IC  TTL Dan IC CMOS.

Dengan adanya teknologi IC ini sangat menguntungkan, sehingga rangkaian yang tadinya memakan banyak tempat dan sangat rumit bisa diringkas dalam sebuah kepingan IC.

Komponen/Bentuk utama dalam sebuah IC yaitu:

IC TTL (Integrated Circuit Transistor Transistor Logic) 


IC TTL adalah IC yang banyak digunakan dalam rangkaian-rangkaian digital karena menggunakan sumber tegangan yang relatif rendah, yaitu antara 4,75 Volt sampai 5,25 Volt. Komponen utama IC TTL adalah beberapa transistor yang digabungkan sehingga membentuk dua keadaan (ON/FF). Dengan mengendalikan kondisi ON/OFF transistor pada IC digital, dapat dibuat berbagai fungsi logika. ada tiga fungsi logika dasar yaitu AND, OR dan NOT.

IC CMOS (IC Complementary Metal Oxide Semiconductor)


 Sebenarnya antara IC TTL dan IC CMOS memiliki pengertian sama, hanya terdapat beberapa perbedaan yaitu dalam penggunaan IC CMOS konsumsi daya yang diperlukan sangat rendah dan memungkinkan pemilihan tegangan sumbernya yang jauh lebih lebar yaitu antara 3 V sampai 15 V. level pengsaklaran CMOS merupakan fungsi dari tegangan sumber. Makin tinggi sumber tegangan akan sebesar tegangan yang memisahkan antara keadaan “1” dan “0”. Kelemahan IC CMOS diantaranya seperti  kemungkinan rusaknya komponen akibat elektrostatis dan harganya lebih mahal. Perlu diingat bahwa semua masukan (input) CMOS harus di groundkan atau dihubungkan dengan sumber tegangan.

Selasa, 24 Januari 2012

Dasar Penyolderan



Bagi para penggemar elektronika membuat rangkaian sendiri memiliki kepuasan tersendiri dari pada membeli rangkaian berupa kit yang siap pakai. Salah satu tantangan bagi para penggemar elektronika dalam membuat rangkaian sendiri adalah teknik menyolder. Diantara sekian banyak kegagalan dalam membuat suatu rangkaian elektronika salah satunya bersumber dari teknik menyolder yang tidak tepat atau jelek. Untuk itu kali ini Kotretan Hendriono mencoba membeberkan pengalaman pribadi tentang teknik menyolder yang terbaik.

Deskripsi
Menyolder merupakan pekerjaan yang membutuhkan kesabaran cukup tinggi selain keterampilan tangan dalam menggerakan solder. Dan solder adalah perangkat wajib yang harus dimiliki dalam tahap penyolderan, namun harus diperhatikan bahwa salah satu penentu kualitas penyolderan adalah kualitas soldernya itu sendiri. Papan rangkaian tercetak atau PCB merupakan lapisan yang sangat peka terhadap panas, jika solder memiliki tingkat panas yang berlebihan maka lapisan tembaga yang menempel pada PCB akan mudah untuk terkelupas, selain itu beberapa komponen elektronika memiliki tingkat panas tertentu sehingga ketika komponen elektronika tersebut menerima panas yang melebihi kemampuannya maka komponen akan rusak sebelum digunakan. Sebaliknya jika solder memiliki tingkat panas yang rendah maka timah tidak mampu merekat kuat pada PCB. Jika dilihat sepintas sepertinya komponen elektronika tersolder dengan baik pada PCB namun sebenarnya timah tidak mampu merekat kuat pada PCB hingga kualitas rangkaian elektronika juga jelek. Hindari menggunakan solder pistol karena panas pada ujung soldernya tidak mampu di kontrol dengan baik, kecuali anda sudah profesional dalam mengatur lamanya waktu solder menempel pada PCB, memahami kualitas komponen dan mengetahui kualitas timah yang digunakan.

Mengenal Solder dan Peralatan
Solder biasanya digolongkan menurut dayanya (watt). Padahal penggolongan seperti ini memiliki tingkat akurasi rendah karena penggolongan sesuai dengan wattnya itu biasanya tidak menjelaskan effisiensi-nya, besarnya daya yang disalurkan hingga keujung solder. Harus diperhatikan pula kapasitas panas dari solder serta waktu naik ke suhu yang stabil. Suhu maksimum solder yaitu suhu dalam keadaan seimbang, suhu yang dicapai bila panas yang dibangkitkan solder telah seimbang dengan panas yang hilang diserap oleh sekelilingnya. Solder yang baik akan menghasilkan suhu maksimum yang sama untuk suatu model yang sama bila disambungkan ke tegangan sumber yang sama.
Sumber daya dari solder berasal dari elemen pemanas yang resistip, maka suhu yang dihasilkan solder dapat diubah dengan pengaturan tegangan sumber pemanasnya. Untuk menghasilkan kualitas penyolderan yang baik lebih baik kita memilih jenis solder yang tingkat panas suhunya dapat diatur baik secara otomatis maupun secara manual yang mampu disesuaikan dengan kebutuhan.
Suhu solder ditentukan selain oleh wattnya juga ditentukan oleh besar, bentuk ujung dan bahan besi yang digunakan. Pemilihan bentuk ujung solder juga mempengaruhi kualitas penyolderan maka sesuaikan bentuk ujung solder yang cocok dengan kebutuhan. Tabel dibawah ini menunjukan penggolongan umum solder sesuai dengan tugas dan wattnya. Perhatikan bahwa pemilihan solder untuk tugas tertentu harus dimulai dari solder dengan watt rendah, jika tidak memadai maka secara bertahap barulah memilih solder dengan daya yang lebih besar.
     
Keselamatan Kerja
Gunakan kacamata polycarbonate atau yang sejenis untuk melindungi mata dari asap solder
Jangan pernah menyentuh elemen pemanas atau ujung dari solder
Selalu kembalikan solder pada stand soder setelah digunakan atau ketika tidak digunakan
Lakukan penyolderan pada area yang cukup ventilasi
Cuci tangan ketika selesai mengerjakan penyolderan

Persiapan Penyolderan
Ujung solder atau ada yang menyebutnya paku solder memiliki peranan penting dalam tahap penyolderan, untuk itu sangat dianjurkan untuk memilih ujung solder yang dilapisi (disepuh) besi atau baja selain lebih tahan lama juga lebih mudah dalam pemeliharaannya dari pada ujung solder tembaga telanjang tanpa disepuh. Ujung solder yang dilapis besi tidak boleh diampelas atau dikikir karena hal tersebut dapat mengikis/merusak lapisan besinya.

Ujung tembaga tanpa pelapis alias telanjang harus benar-benar terpelihara dengan baik, bersih dan berlapis timah. Bila terdapat lapisan-lapisan kerak hitam maka harus segera dikikir atau diampelas sehingga ujungnya menjadi bersih dan licin. Ujung solder yang kotor akan mempersulit rambatan panas dan sulit dalam penyolderan. Periksa dudukan ujung solder dari kemungkinan longgar, jika longgar segera kecangkan sehingga effisiensi panas dan rambatan panasnya lebih terjamin.
Lapisi ujung solder dengan timah saat proses pemanasan dimulai, hal ini untuk menjaga agar ujung solder tetap bersih. Siapkan lap anti panas untuk membersihkan ujung solder yang sewaktu-waktu bisa kotor oleh lapisan-lapisan oksid yang akan muncul saat dilakukan penyolderan. Jangan pernah menggunakan batu salmiak dalam membersihkan ujung solder karena hal ini dapat merusak ujung solder dan meninggalkan sisa endapan disekitar titik solderan.

Jika ujung solder dari tembaga telanjang tanpa lapisan besi maka setiap melakukan penyolderan akan mengikis tembaga berupa butiran halus yang ikut menempel pada PCB dan lama kelamaan pada ujung solder akan terbentuk kawah. Ampelas atau kikirlah lagi hingga ujung solder menjadi licin dan lapisi kembali dengan timah.
Gunakanlah jenis timah solder berkualitas yang terdiri dari campuran timah dengan titik lebur rendah dan mengandung kolophonium sebagai cairan solder. Timah dipasarkan dalam bentuk kawat kecil dengan diamater beragam dan digulung. Jangan sekali-kali menggunakan jenis kawat timah yang tidak berkualitas karena akan merusak kualitas penyolderan, sehebat apapun kita menyolder, sebagus apapun solder yang digunakan dan sekuat apapun PCB jika timah yang digunakan jelek maka hasil solderan pun tetap jelek dan tentunya kualitas akhir rangkaian elektronik yang mengecewakan.

Proses Penyolderan
Jika hal diatas sudah dipahami dan dipersiapkan maka mari lanjutkan pada tahap penyolderan. Perhatikan dengan seksama tahapan dibawah ini dan hal-hal yang harus dilakukan selama tahap penyolderan.

1. Bersihkan PCB dan Kaki Komponen
Bersihkan bagian-bagian yang akan disolder baik itu PCB maupun kaki komponen elektronika dengan ampelas halus atau pisau sehingga lapisan-lapisan cat, gemuk atau oksida tersingkirkan. Bila menggunakan kawat montase berisolasi (misal; kawat email) maka kelupaslah dulu isolasinya sepanjang 6-7mm kemudian ujung kawat dilapis dengan timah.

2. Memasukan Komponen Elektronika pada PCB
Kawat kaki komponen dimasukan pada lubang PCB dan bengkokan dengan tang sehingga terdapat pengait mekanis untuk menjaga posisi komponen. Ujung kawat yang berdiameter besar harus dipasang sedemikian rupa sehingga penyolderan dapat dilakukan dengan baik.

3. Mengatur Posisi PCB
Aturlah posisi PCB dan titik solderan sehingga cairan timah dapat mengalir sendiri ke titik yang diinginkan dengan bantuan gravitasi bumi.

4. Memanaskan PCB dan Kaki Komponen
Letakan bagian datar dari ujung solder ke sisi yang lebar pada PCB sehingga penyaluran panas terjadi melalui permukaan yang paling luas.

5. Menambahkan Timah pada Titik Solderan
Berikan timah pada titik solderan dan usahakan lapisan kolophonium lebih dulu mencair baru kemudian timah. Jumlah timah yang dilebur pada titik solderan tidaklah harus memenuhi lingkaran pad PCB.

6. Menarik Timah Solder
Setelah jumlah timah yang meleleh dirasa cukup, singkirkan timah dari titik solderan. Tahan ujung solder pada titik solderan sampai timah meresap pada semua bagian solderan. Setelah itu tarik ujung solder dari titik solderan dan biarkan beberapa saat untuk proses pendinginan.

7. Mendinginkan Titik Solderan
Selama pendinginan, titik penyolderan tidak boleh terguncang untuk menghindari penyolderan dingin. Penyolderan dingin dapat dilihat dari permukaan timah pada titik solderan yang menjadi buram.

8. Penyolderan Dingin
Penyolderan dingin juga dapat terjadi akibat ujung solder yang kurang panas, terlalu cepat ditarik dari titik penyolderan dan kualitas timah yang jelek. Timah terlihat menempel berupa tetesan pada PCB, solderan seperti ini sangatlah rapuh.

9. Perbaikan Solderan Dingin
Penyolderan dingin bisa saja terjadi maka untuk mengatasinya lakukan pemanasan menggunakan ujung solder pada titik solderan yang akan diperbaiki kemudian tambahkan timah hingga timah meresap pada titik solderan. Ketika dingin pastikan permukaan titik solderan licin dan mengkilap.

10. Perhatikan!
Untuk menyolder komponen semikonduktor gunakanlah solder yang panas dan lakukan dengan cepat. Hindari menggunakan solder yang dingin yang justru membuat proses penyolderan menjadi lebih lama kecuali dalam kondisi tertentu yang mengharuskan menggunakan solder yang lebih dingin.


Merakit Rangkaian Di PCB dengan cara Setrika














Langkah-Langkah Pembuatan Trafo Sendiri




Berikut langkah-langkah pembuatannya :

1. Pembuatan Kokker


2. Rumus Pendekatan untuk Pembuatan Transformator

Langkah 1 :



Langkah 2 :

Inilah hasil dari pembuatan transformator yang saya praktekan

Silahkan di coba Soobb . . .
 Kamu Pasti Bisa ..

HIDUP TEKNIK ...!!!! 3X

Rabu, 11 Januari 2012




Lava Lamp

Senin, 09 Januari 2012

Gerbang Logika

Gerbang AND

Jika semua input tinggi, output yang tinggi. Jika tidak, output rendah.

Tabel kebenaran gerbang AND:

  A | B | Y
-----------------
  0 | 0 | 0
  0 | 1 | 0
  1 | 0 | 0
  1 | 1 | 1

Gerbang OR

Jika satu atau lebih input tinggi, output tinggi. Jika semua input rendah, output rendah.

Tabel kebenaran gerbang OR:


  A | B | Y
-----------------
  0 | 0 | 0
  0 | 1 | 1
  1 | 0 | 1
  1 | 1 | 1

Gerbang NOT

Jika input tinggi, output rendah. Jika input rendah, output tinggi.

tabel kebenaran gerbang NOT :


  A | Y
-----------
  0 | 1
  1 | 0

Selain penggunaan yang jelas tahap ini telah untuk inversi logika, sering digunakan untuk membangun gerbang logika yang lebih kompleks. Sebagai contoh, gerbang AND yang diikuti oleh sebuah gerbang NOT menjadi gerbang NAND. ATAU diikuti oleh sebuah gerbang NOT menjadi gerbang NOR.
Dua TIDAK gerbang dihubungkan secara seri (satu mengemudi yang lain) menjadi tahap penyangga non-inverting, dengan impedansi input tinggi dan impedansi output yang rendah. Dalam merancang sirkuit praktis, ini dapat berguna untuk meningkatkan fanout (gerbang driving range) dari rangkaian logika, di mana memuat sirkuit mungkin ditemui.

Gerbang NAND

Jika satu atau lebih input rendah, output tinggi. Jika semua input tinggi, output rendah.

Tabel kebenaran gerbang NAND:

  A | B | Y
-----------------
  0 | 0 | 1
  0 | 1 | 1
  1 | 0 | 1
  1 | 1 | 0

VCC

Ini adalah sumber cepat dan nyaman dari tegangan suplai umum. Sumber yang lebih kompak dari simbol baterai. Ini memegang titik tinggi, +5 volt, sesuai dengan biner "1" atau logis BENAR.

Gerbang NOR

Jika semua input rendah, output tinggi. Jika output yang rendah.

Gerbang NOR tabel kebenaran:

  A | B | Y
-----------------
  0 | 0 | 1
  0 | 1 | 0
  1 | 0 | 0
  1 | 1 | 0

Gerbang XOR

Jika ganjil input tinggi, output tinggi. Jika tidak, output rendah.

XOR gerbang tabel kebenaran:

  A | B | Y
-----------------
  0 | 0 | 0
  0 | 1 | 1
  1 | 0 | 1
  1 | 1 | 0

Gerbang XNOR

Jika bahkan jumlah input tinggi, output tinggi. Jika ganjil input tinggi, output rendah.

XNOR gerbang tabel kebenaran:

  A | B | Y
-----------------
  0 | 0 | 1
  0 | 1 | 0
  1 | 0 | 0
  1 | 1 | 1

Rangkaian Sederhana


Flip-Flop


Bel Sepeda Mini


Line Follower Sederhana


power supply sederhana


Amplifier


led 20





Komponen

resistor

kapasitor
transistor
sensor




Dioda



Dioda atau Diode adalah sambungan bahan p-n yang berfungsi terutama sebagai penyearah.
Bahan tipe-p menjadi sisi anode sedangkan bahan tipe-n menjadi katode.

Bergantung pada polaritas tegangan yang diberikan kepadanya, diode bisa berlaku sebagai sebuah saklar tertutup (apabila bagian anode mendapatkan tegangan positif sedangkan katodenya mendapatkan tegangan negatif)
Berlaku sebagi saklar terbuka (apabila bagian anode mendapatkan tegangan negatif sedangkan katode mendapatkan tegangan positif).
Kondisi tersebut terjadi hanya pada diode ideal-konseptual.

Pada diode faktual (riil), perlu tegangan lebih besar dari 0,7V (untuk diode yang terbuat dari bahan silikon) pada anode terhadap katode agar diode dapat menghantarkan arus listrik.
Tegangan sebesar 0,7V ini disebut sebagai tegangan halang (barrier voltage).

Diode yang terbuat dari bahan Germanium memiliki tegangan halang kira-kira 0,3V.

* dioda pemancar cahaya atau LED adalah dioda yang memancarkan cahaya bila dipanjar maju.



LED dibuat dari semikonduktor campuran seperti Galium arsenida fosfida (GaAsP), Galium fosfida (GaP), Galium indium fosfida (GaInP), Galium aluminium arsenida (GaAlAs) dsb.

* dioda foto (fotovoltaic) digunakan untuk mengubah energi cahaya menjadi energi listrik searah
* dioda laser digunakan untuk membangkitkan sinar laser taraf rendah, cara kerjanya mirip LED
* dioda Zener digunakan untuk regulasi tegangan

Fungsi Dioda :

• Sebagai penyearah
• Sebagai pengaman rangkaian dari kemungkinan terbaliknya polaritas

Mengukur Dioda Dengan Multitester

Putar batas ukur pada Ohmmeter X10 / X100



1. probe merah => katoda, probe hitam => anoda => Jarum bergerak bukan nol.
kemudian posisi dibalik :
probe merah => anoda, probe hitam => katoda, Jarum tdk bergerak
berarti dioda dalam kondisi BAIK.


2. probe merah => katoda, probe hitam => anoda => Jarum bergerak atau menunjuk nol.
kemudian posisi dibalik :
probe merah => anoda, probe hitam => katoda => Jarum bergerak atau menunjuk nol
berarti dioda dalam kondisi RUSAK / SHORT.

Transformator










Transformator atau transformer atau trafo adalah komponen elektromagnet yang dapat mengubah taraf suatu tegangan AC ke taraf yang lain. Transformator bekerja berdasarkan prinsip induksi elektromagnetik. Tegangan masukan bolak-balik yang membentangi primer menimbulkan fluks magnet yang idealnya semua bersambung dengan lilitan sekunder. Fluks bolak-balik ini menginduksikan GGL dalam lilitan sekunder. Jika efisiensi sempurna, semua daya pada lilitan primer akan dilimpahkan ke lilitan sekunder.





Jenis-jenis transformator

Step-Up

Transformator step-up adalah transformator yang memiliki lilitan sekunder lebih banyak daripada lilitan primer, sehingga berfungsi sebagai penaik tegangan. Transformator ini biasa ditemui pada pembangkit tenaga listrik sebagai penaik tegangan yang dihasilkan generator menjadi tegangan tinggi yang digunakan dalam transmisi jarak jauh.

Step-Down

Transformator step-down memiliki lilitan sekunder lebih sedikit daripada lilitan primer, sehingga berfungsi sebagai penurun tegangan. Transformator jenis ini sangat mudah ditemui, terutama dalam adaptor AC-DC.
Autotransformator

Transformator jenis ini hanya terdiri dari satu lilitan yang berlanjut secara listrik, dengan sadapan tengah. Dalam transformator ini, sebagian lilitan primer juga merupakan lilitan sekunder. Fasa arus dalam lilitan sekunder selalu berlawanan dengan arus primer, sehingga untuk tarif daya yang sama lilitan sekunder bisa dibuat dengan kawat yang lebih tipis dibandingkan transformator biasa. Keuntungan dari autotransformator adalah ukuran fisiknya yang kecil dan kerugian yang lebih rendah daripada jenis dua lilitan. Tetapi transformator jenis ini tidak dapat memberikan isolasi secara listrik antara lilitan primer dengan lilitan sekunder.

Selain itu, autotransformator tidak dapat digunakan sebagai penaik tegangan lebih dari beberapa kali lipat (biasanya tidak lebih dari 1,5 kali).

Autotransformator variabel

Autotransformator variabel sebenarnya adalah autotransformator biasa yang sadapan tengahnya bisa diubah-ubah, memberikan perbandingan lilitan primer-sekunder yang berubah-ubah.

Transformator isolasi

Transformator isolasi memiliki lilitan sekunder yang berjumlah sama dengan lilitan primer, sehingga tegangan sekunder sama dengan tegangan primer. Tetapi pada beberapa desain, gulungan sekunder dibuat sedikit lebih banyak untuk mengkompensasi kerugian. Transformator seperti ini berfungsi sebagai isolasi antara dua kalang. Untuk penerapan audio, transformator jenis ini telah banyak digantikan oleh kopling kapasitor.

Transformator pulsa

Transformator pulsa adalah transformator yang didesain khusus untuk memberikan keluaran gelombang pulsa. Transformator jenis ini menggunakan material inti yang cepat jenuh sehingga setelah arus primer mencapai titik tertentu, fluks magnet berhenti berubah. Karena GGL induksi pada lilitan sekunder hanya terbentuk jika terjadi perubahan fluks magnet, transformator hanya memberikan keluaran saat inti tidak jenuh, yaitu saat arus pada lilitan primer berbalik arah.

Transformator tiga fasa

Transformator tiga fasa sebenarnya adalah tiga transformator yang dihubungkan secara khusus satu sama lain. Lilitan primer biasanya dihubungkan secara bintang (Y) dan lilitan sekunder dihubungkan secara delta (Δ).

Rumus Hitungan Rangkaian Komponen

Resistor

Dalam praktek para desainer elektronika kadang-kadang membutuhkan resistor dengan nilai tertentu. Akan tetapi nilai resistor tersebut tidak ada di toko penjual, bahkan pabrik sendiri tidak memproduksinya. Solusi untuk mendapatkan suatu nilai resistor dengan resistansi yang unik tersebut dapat dilakukan dengan cara merangkaikan beberapa resistor sehingga didapatkan nilai resistansi yang dibutuhkan. Ada dua cara untuk merangkaikan resistor, yaitu :

Rangkaian resistor Seri

Rangkaian resistor Paralel

Rangkaian resistor secara seri akan mengakibatkan nilai resistansi total semakin besar.
Di bawah ini contoh resistor yang dirangkai secara serial.


Seri



Menghasilkan rumus : R total = R1+R2+R3,,, dst

Sedangkan rangkaian resistor secara paralel akan mengakibatkan nilai resistansi pengganti semakin kecil.
Di bawah ini contoh resistor yang dirangkai secara paralel.


Paralel




Menghasilkan rumus : 1 / R total = 1/R1+1/R2+1/R3,,, dst


Daya Resistor


P = V x I


Caran menghitung tegangan di tiap resistor

Kalau dari rangkaian diatas, secara kasar bisa kita tebak tegangan tiap resistor adalah 1/3 dari tegangan sumber 12V/3 = 4Volt di tiap Resistor

Tapi bagaimana seandainya besar resistansinya berbeda?
Kita bisa menghitung dengan menggunakan cara seperti dibawah ini:
Dari Rumus dasar V = I x R
Maka
VR1 = I x R1
VR1 = 0,04 x 100
VR1 = 4 Volt
Demikian seterusnya untuk R2 dan R3 , shingga jika dijumlahkan hasilnya akan sama dengan tgangan sumber

Vsumber = VR1 + VR2 + VR3

Rangkaian Campuran


Contoh soal:

Berapakan nilai Rt atau tahanan ekivalen rangkaian campuran resistor dibawah ini?



Penyelesaian:

Pada gambar diatas tahanan-tahanan 56 Ω dan 33 Ω terhubung secara pararel, kemudian hubungan pararel ini dihubung seri dengan tahanan 47 Ω.

Buat tahanan ekivalen Rt1 untuk hubungan pararel tahanan 56 Ω dan 33 Ω, dengan rumus pararel
1/Rt = 1/R1 + 1/R2 + 1/R3 + · · · · · · + 1/Rn, maka
1/Rt1 = 1/56 + 1/33
1/Rt1 = 89/1848
89Rt1 = 1848
Rt1 = 1848/89
Rt1 = 20,8 Ω

Hubungan pararel tahanan 56 Ω dan 33 Ω dapat digantikan dengan tahanan ekivalen sebesar 20,8 Ω . Penyederhanaan ini menghasilkan dua buah tahanan yang terhubung secara seri, yaitu 20,8 Ω dan 47 Ω.



Nilai tahanan ekivalen rangkaian seri ini, sesuai rumus seri
Rt = R1 + R2 + R3 + · · · · · · + Rn, maka
Rt = 20,8 + 47
Rt = 68,7 Ω

Sehingga diperoleh Rt atau sebuah tahanan ekivalen sebesar 67,8 Ω


Kapasitor


Cara Menghitung Kapasitor secara Seri



                                                 Kapasitor susunan Seri berkapasitas besar

 Ketiga kapasitor dipasang secara serial dan ntuk menemukan nilai kapasitor pengganti atau nilai capasitansi dari ketiga kapasitor tersebut dapat kita gunakan persamaan :

1/Ct = 1/C1 + 1/C2 + 1/C3

Diketahui :

C1 = 10 p

C2 = 20 p

C3 = 30 p

Maka :

1/Ct = 1/10 + 1/20 + 1/30

1/Ct = 6/60 + 3/60 + 2/60

1/Ct = 11/60

Ct = 60/11 = 5.45 p

Setelah kita hitung secara seksama dapat kita ketahui bahwa nilai total dari kapasitor serial tersebut adalah sebesar 5.45 p.


Cara Menghitung Kapasitor Paralel



Untuk menentukan jumlah total capasitansi dari kapasitor tersebut dapat kita pergunakan persamaan :

Ct = C1 + C2 + C3
Contoh :
C1 = C2 = C3 = 10F
Maka:
Ct = 10F + 10F + 10F = 30F

Jadi setelah kita hitung secara seksama nilai yang dihasilkan nilai capasitansi total sebesar 30F. Persamaan menghitung kapasitor parallel memiliki persamaan yang sama dengan menghitung resistor serial.


Cara Menghitung Kapasitor Seri - Paralel



Rangkaian kapasitor serial dan rangkaian kapasitor parallel.

Untuk mencari nilai capasitansi total kita dapat menggunakan kombinasi dari persamaan capasitor serial dan persamaan capasitor parallel.

Persamaan Capasitor serial : 1/Ct = 1/C1 + 1/C2 + .........+ 1/Cn

Persamaan Capasitor parallel : Ct = C1 + C2 + .... + Cn

Dari kedua persamaan diatas kita dapat mengkombinasikanya untuk menghitung nilai capasitansi pengganti dari rangkaian capasitor serial-parallel seperti yang terlihat pada gambar. Berikut adalah kombinasi dari kedua persamaan diatas :

Diketahui :

C1 = C2 = C3 = C4 = C5 = 10P

Maka :

1/Cs = 1/C3 + 1/C4

1/Cs = 1/10 + 1/10

1/Cs = 2/10

Cs = 10/2 = 5P


Cp = C2 + Cs1

Cp = 10 + 5 = 15P


1/Ct = 1/C1 + 1/Cp + 1/C5

1/Ct = 1/10 + 1/15 + 1/10

1/Ct = 3/30 + 2/30 + 3/30

1/Ct = 8/30

Ct = 30/8 = 3.75P

Keterangan :

* Cs = Capasitor Seri
* Cp = Capasitor Parallel
* Ct = Capasitor total

Setelah kita kombinasikan kedua persamaan, dapat kita temukan nilai capasitansi total dari rangkaian kombinasi kapasitor serial-parallel tersebut. Besarnya nilai yang kita dapatkan dari hasil perhitungan adalah sekitar 3.75P.

Hukum-Hukum Dalam Elektronika

1. Arus
Arus listrik adalah banyaknya muatan listrik yang mengalir tiap satuan waktu. Muatan listrik bisa mengalir melalui kabel atau penghantar listrik lainnya.

I = Q/T

Pada zaman dulu, Arus konvensional didefinisikan sebagai aliran muatan positif, sekalipun kita sekarang tahu bahwa arus listrik itu dihasilkan dari aliran elektron yang bermuatan negatif ke arah yang sebaliknya.

Satuan SI untuk arus listrik adalah ampere (A).

2. Hambatan
Hambatan listrik adalah perbandingan antara tegangan listrik dari suatu komponen elektronik (misalnya resistor) dengan arus listrik yang melewatinya. Hambatan listrik dapat dirumuskan sebagai berikut:

R = V/I

atau

di mana V adalah tegangan dan I adalah arus.

Satuan SI untuk Hambatan adalah Ohm (R).

3. Tegangan
Tegangan listrik (kadang disebut sebagai Voltase) adalah perbedaan potensi listrik antara dua titik dalam rangkaian listrik, dinyatakan dalam satuan volt. Besaran ini mengukur energi potensial sebuah medan listrik untuk menyebabkan aliran listrik dalam sebuah konduktor listrik. Tergantung pada perbedaan potensi listrik satu tegangan listrik dapat dikatakan sebagai ekstra rendah, rendah, tinggi atau ekstra tinggi.

V= I .R

Satuan SI untuk Tegangan adalah volt (V).

4. Hukum OHm
Pada dasarnya sebuah rangkaian listrik terjadi ketika sebuah penghantar mampu dialiri electron bebas secara terus menerus. Aliran yang terus-menerus ini yang disebut dengan arus, dan sering juga disebut dengan aliran, sama halnya dengan air yang mengalir pada sebuah pipa.

Tenaga (the force) yang mendorong electron agar bisa mengalir dalam sebauh rangkaian dinamakan tegangan. Tegangan adalah sebenarnya nilai dari potensial energi antara dua titik. Ketika kita berbicara mengenai jumlah tegangan pada sebuah rangkaian, maka kita akan ditujukan pada berapa besar energi potensial yang ada untuk menggerakkan electron pada titik satu dengan titik yang lainnya. Tanpa kedua titik tersebut istilah dari tegangan tersebut tidak ada artinya.

Elektron bebas cenderung bergerak melewati konduktor dengan beberapa derajat pergesekan, atau bergerak berlawanan. Gerak berlawanan ini yang biasanya disebut dengan hambatan. Besarnya arus didalam rangkaian adalah jumlah dari energi yang ada untuk mendorong electron, dan juga jumlah dari hambatan dalam sebuah rangkaian untuk menghambat lajunya arus. Sama halnya dengan tegangan hambatan ada jumlah relative antara dua titik. Dalam hal ini, banyaknya tegangan dan hambatan sering digunakan untuk menyatakan antara atau melewati titik pada suatu titik.

Untuk menemukan arti dari ketetapan dari persamaan dalam rangkaian ini, kita perlu menentukan sebuah nilai layaknya kita menentukan nilai masa, isi, panjang dan bentuk lain dari persamaan fisika. Standard yang digunakan pada persamaan tersebut adalah arus listrik, tegangan ,dan hambatan.
Symbol yang digunakan adalah standar alphabet yang digunakan pada persamaan aljabar. Standar ini digunakan pada disiplin ilmu fisika dan teknik, dan dikenali secara internasional. Setiap unit ukuran ini dinamakan berdasarkan nama penemu listrik. Amp dari orang perancis Andre M. Ampere, volt dari seorang Italia Alessandro Volta, dan ohm dari orang german Georg Simon ohm.

Simbol matematika dari setiap satuan sebagai berikut “R” untuk resistance (Hambatan), V untuk voltage (tegangan), dan I untuk intensity (arus), standard symbol yang lain dari tegangan adalah E atau Electromotive force. Simbol V dan E dapat dipertukarkan untuk beberapa hal, walaupun beberapa tulisan menggunakan E untuk menandakan sebuah tegangan yang mengalir pada sebuah sumber ( seperti baterai dan generator) dan V bersifat lebih umum.

Salah satu dasar dalam perhitungan elektro, yang sering dibahas mengenai satuan couloumb, dimana ini adalah besarnya energi yang setara dengan electron pada keadaan tidak stabil. Satu couloumb setara dengan 6.250.000.000.000.000.000. electron. Symbolnya ditandai dengan Q dengan satuan couloumb. Ini yang menyebabkan electron mengalir, satu ampere sama dengan 1 couloumb dari electron melewati satu titik pada satu detik. Pada kasus ini, besarnya energi listrik yang bergerak melewati conductor (penghantar).

Sebelum kita mendefinisikan apa itu volt, kita harus mengetahui bagaimana mengukur sebuah satuan yang kita ketahui sebagai energi potensial. Satuan energi secara umum adalah joule dimana sama dengan besarnya work (usaha) yang ditimbulkan dari gaya sebesar 1 newton yang digunakan untuk bergerak sejauh 1 meter (dalam satu arah). Dalam british unit, ini sama halnya dengan kurang dari ¾ pound dari gaya yang dikeluarkan sejauh 1 foot. Masukkan ini dalam suatu persamaan, sama halnya dengan I joule energi yang digunakan untuk mengangkat berat ¾ pound setinggi 1 kaki dari tanah, atau menjatuhkan sesuatu dengan jarak 1 kaki menggunakan parallel pulling dengan ¾ pound. Maka kesimplannya, 1 volt sama dengan 1 joule energi potensial per 1 couloumb. Maka 9 volt baterai akan melepaskan energi sebesar 9 joule dalam setiap couloum dari electron yang bergerak pada sebuah rangkian.

Satuan dan symbol dari satuan elektro ini menjadi sangat penting diketahui ketika kita mengeksplorasi hubungan antara mereka dalam sebuah rangkaian. Yang pertama dan mungkin yang sangat penting hubungan antara tegangan, arus dan hambatan ini disebut hokum ohm. Ditemukan oleh Georg Simon Ohm dan dipublikasikannya pada sebuah paper pada tahun 1827, The Galvanic Circuit Investigated Mathematically. Prinsip ohm ini adalah besarnya arus listrik yang mengalir melalui sebuah penghantar metal pada rangkaian, ohm menemukan sebuah persamaan yang simple, menjelaskan bagaimana hubungan antara tegangan, arus, dan hambatan yang saling berhubungan.

HUKUM OHM

E = I R
I = E / R
R = I / E

Kesimpulan :
• Tegangan dinyatakan dengan nilai volts disimbolkan dengan E atau V.
• Arus dinyatakan dengan amps, dan diberi symbol I
• Hambatan dinyatakan dengan ohms diberi symbol R
• Hukum Ohm: E = IR ; I = E/R ; R = E/I

Besarnya daya pada suatu rangkaian dapat di hitung dengan :

P = V . I atau P = I2 . R atau P = V2/ R

Dimana :
P : daya, dalam satuan watt
V : tegangan dalam satuan volt
I : arus dalam satuan ampere

Contoh Soal Latihan:
Sebuah bangunan rumah tangga memakai lampu dengan tegangan pada instalansi lampu rumah tangga tersebut adalah 220 Volt, dan arus yang mengalir pada lampu tersebut adalah 10 ampere, berapakah hambatan pada lampu tersebut, hitunglah?

JAWAB :
dik :
V = 220 Volt
I = 10 Amper
Dit : hambatan…………….?

JAWAB
R = V/R

R = 220/10 = 22 ohm

Jadi hambatan yang mengalir adalah 22 ohm

Contoh Soal Latihan:
Didalam suatu rumah tinggal, terpasang sebuah lampu dengan tegangan 220 Volt, setelah di ukur dengan amper meter arusnya adalah 2 ampere, hitunglah daya yang di serap lampu tersebut ?

JAWAB :
dik :
V = 220 Volt
I = 2 Amper
Dit : Daya…………….?

JAWAB
P = V.I

P = 220. 2 = 440 Watt


HUKUM KIRCHOFF

hukum kirchoff ditemukan oleh seorang ahli fisika asal jerman bernama Gustav Robert Kirchoff pada tahun 1862. Hukum kirchoff ini menerangkan tentang arus listrik dan tegangan. Hukum kirchoff dibagi menjadi 2 macam yaitu :

1. hukum kirchoff I, dan

2. hukum kirchoff II

Hukum Kirchhoff I / Kirchhoff Current Law

kata si gustav hukum kirchoff I itu berbunyi “ Jumlah Aljabar semua arus dalam titik percabangan itu sama dengan nol”

kalo ditulis dalam bentuk matematik seperti ini :

∑ I = 0

Hukum kirchoff ini menerangkan tentang hukum arus kirchoff. Emang orang jaman dulu kalo nerangin rumus itu bahasanya rumit2, sekarang biar saya permudah kalimat dari hukum kirchoff I. Agar lebih mudah dipahami melalui contoh kejadian saja…


Hukum Kirchhoff 1

Mari kita lihat rangkaian sederhana di bawah ini, sebuah rangkaian resistor yang dipasang secara paralel. (Kenapa dipasang paralel? Seperti yang saya terangkan di postingan sebelumnya tentang resistor, kalo resistor dipasang paralel maka akan menjadi pembagi tegangan bukan pembagi arus dan percabangan rangkaian hanya terjadi di rangkaian paralel).


Nah, rangkaian di atas itu jalur arus listriknya seperti ini :


Tidak usah bingung kenapa jalurnya seperti itu, cukup liat tanda panah dari arusnya, itulah arah dari arusnya, hanya saja saya bagi dua bagian, arus masuk dan arus keluar. Baiklah, sesuai dengan hukum kirchoff 1, maka pada titik A, I1 – I2 – I3 – I4 = 0, atau I1 = I2 + I3 + I4, begitu juga pada titik B terjadi hal yang sama.

Itulah yang dimaksud dengan hukum kirchoff 1, berapapun jumlah arus yang masuk dari percabangan A akan sama dengan arus yang keluar dari percabangan B. Mengerti?

Agar lebih paham lagi mari kita lihat contoh soal dibawah :

4 buah lampu dipasang paralel dengan sumber tegangan dari sebuah adaptor. Jika arus yang masuk dari tiap-tiap lampu adalah : lampu 1 = 5A lampu 2 = 20A lampu 3 = 15A, maka tentukanlah arus yang dbutuhkan oleh lampu 4?

Jawaban :

Sesuai dengan data yang diberikan, I lampu 1 = 5A; I lampu 2 = 20A; I lampu 3 = 15A.

Maka, kata si kirchoff semua arus jika dikurangkan harus sama dengan nol di setiap percabangan. Karena rangkaian berbentuk paralel untuk semua lampu maka rangkaian ini memiliki percabangan dan memenuhi syarat buat pakai hukum kirchoff 1.

I1 – I2 – I3 – I4 = 0

5A – 20A – 15A – I4 = 0

I4 = 5A + 20A + 15A

I4 = 40A
Hukum Kirchhoff 2 / Kirchhoff Voltage Law

Pada hukukm Kirchhoff 2 sebenarnya bunyinya hampir sama dengan hk. Kirchhoff 1, yang membedakan adalah kalo hk. Kirchoff 1 itu digunakan untuk arus dalam percabangan sedangkan hukum Kirchhoff 2 digunakan untuk menghitung jumlah tegangan pada suatu lintasan tertutup.

Hukum kirchoff 2 berbunyi “ Penjumlahan tegangan pada masing-masing komponen penyusun yang membentuk satu lintasan tertutup akan bernilai Nol”. Atau dalam bentuk matematiknya sebagai berikut :

∑V = 0

Mari kita langsung lihat contoh soalnya saja …

Pertanyaan : tentukanlah V2 rangkaian tersebut!

Jawaban :

sekarang kita lihat tanda plus minus dari rangkaiannya dan ingat rumus dari hukum kirchhoff 2 ΣV = 0

jika arah tegangannya dihitung searah dengan jarum jam maka,

+V2+10+2-15 = 0

V2 = 3 volt

dan jika berlawanan arah jarum jam maka,

-V2-10-2+15 = 0

V1 = 3 volt